Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Indian J Ophthalmol ; 2016 July; 64(7): 492-495
Article in English | IMSEAR | ID: sea-179366

ABSTRACT

Background: Congenital hereditary endothelial dystrophy (CHED) is an autosomal recessive disorder characterized by bilateral, symmetrical, noninflammatory corneal clouding (edema) present at birth or shortly thereafter. This study reports on an unusual delayed presentation of CHED with compound heterozygous SLC4A11 mutations. Materials and Methods: A 45‑year‑old female, presenting with bilateral decreased vision since childhood that deteriorated in the last 5 years, was evaluated to rule out trauma, viral illness, chemical injury, glaucoma, and corneal endothelial dystrophies. Tear sample was sent for herpes simplex viral (HSV) antigen testing. Genomic DNA from peripheral blood was screened for mutations in all exons of SLC4A11 by direct sequencing. Full‑thickness penetrating keratoplasty was done and corneal button was sent for histopathological examination. Results: Slit‑lamp findings revealed bilateral diffuse corneal edema and left eye spheroidal degeneration with scarring. Increased corneal thickness (762 μm and 854 μm in the right and left eyes, respectively), normal intraocular pressure (12 mmHg and 16 mmHg in the right and left eyes, respectively), inconclusive confocal scan, and specular microscopy, near normal tear film parameters, were the other clinical features. HSV‑polymerase chain reaction was negative. Histopathological examination revealed markedly thickened Descemet’s membrane with subepithelial spheroidal degeneration. SLC4A11 screening showed a novel variant p.Ser415Asn, reported mutation p.Cys386Arg and two polymorphisms, all in the heterozygous state and not identified in 100 controls. Conclusions: The study shows, for the first time, compound heterozygous SLC4A11 mutations impair protein function leading to delayed onset of the disease.

2.
Article in English | IMSEAR | ID: sea-180667

ABSTRACT

Lamb SE, Williamson EM, Heine PJ, Adams J, Dosanjh S, Dritsaki M, Glover MJ, Lord J, McConkey C, Nichols V, Rahman A, Underwood M, Williams MA; Strengthening and Stretching for Rheumatoid Arthritis of the Hand (SARAH) Trial Team. (Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford; Warwick Clinical Trials Unit, University of Warwick, Coventry; Faculty of Health Sciences, University of Southampton, Southampton; Health Economics Research Group, Brunel University, Uxbridge; University College London, London, UK.) Exercises to improve function of the rheumatoid hand (SARAH): A randomised controlled trial. Lancet 2015;385:421–9.

3.
Article in English | IMSEAR | ID: sea-180591
5.
Braz. j. microbiol ; 42(1): 374-387, Jan.-Mar. 2011. ilus, tab
Article in English | LILACS | ID: lil-571412

ABSTRACT

Tannin acyl hydrolase commonly known as tannase is an industrially important enzyme having a wide range of applications, so there is always a scope for novel tannase with better characteristics. A newly isolated tannase-yielding fungal strain identified as Penicillium atramentosum KM was used for tannase production under solid-state fermentation (SSF) using different agro residues like amla (Phyllanthus emblica), ber (Zyzyphus mauritiana), jamun (Syzygium cumini), Jamoa (Eugenia cuspidate) and keekar (Acacia nilotica) leaves. Among these substrates, maximal extracellular tannase production i.e. 170.75 U/gds and 165.56 U/gds was obtained with jamun and keekar leaves respectively at 28ºC after 96 h. A substrate to distilled water ratio of 1:2 (w/v) was found to be the best for tannase production. Supplementation of sodium nitrate (NaNO3) as nitrogen source had enhanced tannase production both in jamun and keekar leaves. Applications of the enzyme were studied in wine clarification and tea cream solubilization. It resulted in 38.05 percent reduction of tannic acid content in case of jamun wine, 43.59 percent reduction in case of grape wine and 74 percent reduction in the tea extract after 3 h at 35ºC.


Subject(s)
Enzyme Activation , Fermentation , Hydrolases/analysis , Penicillium/enzymology , Penicillium/isolation & purification , Hydrolyzable Tannins/analysis , Hydrolyzable Tannins/isolation & purification , Catalysis , Methods , Solubility , Methods
6.
J Biosci ; 1996 Dec; 21(6): 819-826
Article in English | IMSEAR | ID: sea-161168

ABSTRACT

Fatty acid synthesis in leucoplasts isolated from developing seeds of Brassica campestris was absolutely dependent on external source of ATP. None of the other nucleoside triphosphates could replace ATP in the reaction mixture. Use of ADP alone also resulted in reduced rates of fatty acid synthesis. However, in combination with inorganic phosphate or inorganic pyrophosphate, it improved the rate of fatty acid synthesis, giving up to 50% of the ATP-control activity. Inorganic phosphate or inorganic pyrophosphate alone again did not serve as an energy source for fatty acid synthesis. AMP, alongwith inorganic pyrophosphate could promote fatty acid synthesis to up to 42% of the activity obtained with ATP. The three components dihydroxy acetone phosphate, oxaloacetic acid, inorganic phosphate of dihydroxy acetone phosphate-shuttle together could restore 50% of the activity obtained with ATP. Omission of any one of the components of this shuttle drastically reduced the rate of fatty acid synthesis to 15–24% of the ATP-control activity. Inclusion of ATP in reaction mixtures containing shuttle components enhanced the rate of synthesis over control. The optimum ratio of shuttle components dihydroxy acetone phosphate, oxaloacetic acid, inorganic phosphate determined was 1:1:2. Maximum rates of fatty acid synthesis were obtained when dihydroxy acetate phosphate was used as the shuttle triose. Glyceraldehyde-3-P, 3-phosphoglycerate, 2-phosphoglycerate and phosphoenolpyruvate as shuttle trioses were around 35–60% as effective as dihydroxy acetone phosphate in promoting fatty acid synthesis. The results presented here indicate that although the isolated leucoplasts readily utilize exogenously supplied ATP for fatty acid synthesis, intraplastidic ATP could also arise from dihydroxy acetone phosphate shuttle components or other appropriate metabolites.

SELECTION OF CITATIONS
SEARCH DETAIL